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MECHANICS OF CUTTING AND BORING

i FOREWORD

There are a multitude of tasks that involve the cutting, drilling, or excavating of
natural ground materials and massive structural materials. The required technology
varies with the properties of the materials and with the scale of operations, but a
broad distinction can be made on the basis of the strength, cohesion, and ductility
of the material that is to be worked. In weak materials that have little cohesion
{e.g. typical soils) the forces and energy levels required for separation and disaggre-
gation are often small compared with the forces and energy levels required for
acceleration and transport, and materials handling technology dominates the con-
sideration. By contrast, in strong materials that exhibit brittle fracture character-

; istics (e.g. rock, concrete, ice, frozen ground) the forces and energy levels required
! for cutting and breaking are high compared with those required for handling the
broken material, and the technical emphasis is on cutting and breaking processes.

CRREL has long been concerned with excavating and drilling in ice and
frozen ground, and over the past decade systematic research has been directed to
this technical area. The research has covered a wide range of established technolo-
gies and novel concepts but, for short term applications, interest has necessarily
centered on special developments of proven concepts. In particular, there has been
4 considerable concern with direct mechanical cutting applied to excavation, cutting,
and drilling of frozen soils, glacier ice, floating ice, and dense snow. During the
' course of this work, numerous analyses and design exercises have been undertaken,
and an attempt is now being made to develop a systematic analytical scheme that
can be used to facilitate future work on the mechanics of cutting and boring
machines.

‘ In the industrial sector, rock-cutting machines are usually designed by applying

standard engineering methods in conjunction with experience gained during evolu-
tion of successive generations of machines. This is a very sound approach for gradu-
al progressive development, but it may not be appropriate when there are require-
ments for rapid development involving radical departures from established perform-
ance characteristics, or for operations in unusual and unfamiliar materials. A
distinct alternative is to design more or less from first principles by means of
theoretical or experimental methods, but this alternative may not be practically
feasible in its more extreme form,

e s -

There are numerous difficulties in attempting a strict scientific approach to the
design of rock-cutting machines. The relevant theoretical rock mechanics is likely
to involve controversial fracture theories and failure criteria, and to call for detailed
material properties that are not normally available to a machine designer. Direct
experiments are costly and time-consuming, and experimental data culled from the
literature may be unsuitable for extrapolation, especially when (as is sometimes the
case) they are described by relationships that violate the basic physics of the prob-
lem. Comprehensive mechanical analyses for rock-cutting machines have not yet
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MACHINE CHARACTERISTICS TOOL ACTION

Tronsverse Rotation Parallel Motion
Bucket-wheel trenchers, disc
sava, excavators, pavement
planers, rotary-drum graders,
continuous miners, drum
shearers, ripping boows, some ]
\ tunnelers, rotary snowplows,
dredge cutterheads l

Drag bits, picks, planing
cutters, shearing blades,
diamonds

Axial Rotation

Rotary drills, sugers,
shatt sinkers, raise borers,
full-fsce tunnel borers,
face miners, corers, rotary
snowplows, trepanners E—

-~

Normal
Indentation

Continugus Belt

R

Roller bits (with studs or
teeth), disc cutters, impact
and percussion tools

Chain-type trenchers, ladder
/ dredges, cosd sevs, shale
saws, atc.

Classification of machines and cutting tools for analytical purposes.

evolved, and while established design principles for metal-cutting machine tools
may be helpful, they do not cover ali pertinent aspects. For example, there are
usually enormous differences in forces and power levels between machine tools
and excavating machines, and force components that can be almost ignored in a
relatively rigid machine tool may be crucial design factors for large mobile rock
cutters that are highly compliant.

In dealing with cold regions problems where neither outright empiricism nor
highly speculative theory seem appropriate, some compromise approaches have
' been adopted. While simple and practical, these methods have proved useful for
analysis and design of cutting and boring machines working under a wide range of
conditions in diverse materials, and it seems possible that they might form the basis
for a general analytical scheme. The overall strategy is to examine the kinematics,
dynamics and energetics for both the cutting tool and the complete machine
according to a certain classification, adhering as far as possible to strict mechanical
principles, but holding to a minimum the requirements for detailed information on
the properties of the material to be cut,

————

Kinematics deals with the inherent relationships defined by the geometry and
motion of the machine and its cutting tools, without much reference to the prop-
erties of the material being cut. Dynamics deals with forces acting on the machine
and its cutting tools, taking into account machine characteristics, operating pro-
cedures, wear effects, and material properties. Energetics deals largely with specific
energy relationships that are determined from power considerations involving forces
5 and velocities in various parts of the system, taking into account properties of the 1
materials that are being cut. ]

o

MY

These mechanical principles are applied in accordance with a classification based
on the characteristic motions of the major machine element and the actual cutting
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tools, as illustrated above. Machines are classified as transverse rotation, axial rota-
tion, or continuous belt, while the action of cutting tools is divided into paralle/
motion and normal indentation,

Transverse rotation devices turn about an axis that is perpendicular to the direc-
tion of advance, as in circular saws. The category includes such things as bucket-
wheel trenchers and excavators, pavement planers, rotary-drum graders, large disc
saws for rock and concrete, certain types of tunneling machines, drum shearers,
continuous miners, ripping booms, some rotary snowplows, some dredge cutter-
heads, and various special-purpose saws, millers and routers. Ax/al rotation devices
turn about an axis that is paraliel to the direction of advance, as in drills. The
category includes such things as rotary drills, augers and shaft-sinking machines,
raise borers, full-face tunnel boring machines, corers, trepanners, some face miners,
and certain types of snowplows. Continuous belt machines represent a special form
of transverse rotation device, in which the rotor has been changed to a linear ele-
ment, as in a chain saw. The category includes “‘digger chain’’ trenchers, ladder
dredges, coal saws, shale saws, and similar devices.

In tool action, parallel motion denotes an active stroke that is more or less paral-
lel to the surface that is being advanced by the tool, i.e. a planing action. Tools
working this way include drag bits for rotary drills and rock-cutting machines; picks
for mining and tunneling machines; teeth for ditching and dredging buckets; trencher
blades; shearing blades for rotary drills, surface planers, snowplows, etc.; diamond
edges for drills and wheels; and other ‘‘abrasive cutters, Normal indentation de-
notes an active stroke that is more or less normal to the surface that is being ad-
vanced, i.e. one which gives a pitting or cratering effect such as might be produced
by a stone chisel driven perpendicular to the surface. Tools working this way in-
clude roller rock bits for drills, tunneling machines, raise borers, reamers, etc.; disc
cutters for tunneling machines; and percussive bits for drills and impact breakers.

A few machines and operations do ndt fit neatly into this classification. For ex-
ample, certain roadheaders and ripping booms used in mining sump-in by axial
rotation and produce largely by transverse rotation, and there may be some question
about the classification of tunnel reamers and tapered rock bits. However, the
classification is very satisfactory for general mechanical analysis.

Complete treatment of the mechanics of cutting and boring is a lengthy task,
and in order to expedite publication a series of reports dealing with various aspects
of the problem will be printed as they are completed. The main topics to be covered
in this series are:

1. Kinematics of transverse rotation machines (Special Report 226, May 1975)

2. Kinematics of axial rotation machines (CRREL Report 76-16, June 1976)

3. Kinematics of continuous belt machines (CRREL Report 76-17, June 1976)

4, Dynamics and energetics of parallel-motion tools (CRREL Report 77-7, April 1977)
5. Dynamics and energetics of indentation tools

6

. Dynamics and energetics of transverse rotation machines (CRREL Report 77-19,
August 1977) 3

7. Dynamics and energetics of axial rotation machines

8. Dynamics and energetics of continuous belt machines (CRREL Report 78-11,
April 1978)
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{ MECHANICS OF CUTTING AND BORING

Part 5: Dynamics and Energetics of Indentation Tools

. Malcolm Mellor

INTRODUCTION

Indentation is a simple and effective method for cutting and drilling hard materials, especially
rocks and concrete. A punch or chisel is thrust or driven perpendicularly against the surface of the
k material and, if that material is brittle, a pit or crater is formed. The average contact stress needed
! to indent a brittle material tends to be rather high, so that primitive applications of the technique
relied entirely upon inertial loading, either by hand hammers and pick axes or by drop weights. In
modern applications of indentation cutting, percussion and impact are still the most versatile load-
ing methods. Pneumatic and hydraulic loading mechanisms tend to dominate the field, although
there are many and varied devices employing drop weights, internal combustion, or even impact by
free projectiles, However, indentation by quasi-static thrust against a reaction has become increas-
ingly important, first in roller rock bits for rotary drilling and later in large diameter tunneling
machines and raise borers for hard rocks.

The first part of this report deals with the general principles of indentation tools and with experi-
mental data for indentation into rock. The second part concentrates on the mechanics of rolling
cutters and on experimental data for disc cutters. It does not consider the mechanics of devices for
driving inertially-loaded indenters.

TERMINOLOGY

An indentation cutter, or indentation tool, is a device that forms a pit, crater or groove in the sur-
face of a material by penetrating in a direction more or less perpendicular to the surface. The indenta-

Y

i ' tion process may involve 1} brittle fracture, with formation of loose fragments, 2) ductile yielding,
' with displacement of material towards the free surface, 3) compaction of a readily compressible

! ' material.

Q : A roller cutter is taken here to be any kind of device that indents a surface by means of a rolling

action. Examples of such devices are wheel-type glass cutters, roller pastry cutters, roller rock bits
for rotary drilling, disc cutters for rock-tunneling machines, free-rolling disc cutters for asphait,
rock-cutting disc cutters with studded rims, toothed-wheel roller rock cutters, studded roller drums
for rock cutting, and so on. :

The penetration depth of an indentation device is the distance from the starting surface to the
tip of the indenter, measured normal to the surface.

The cutting forces of indentation devices are either resuitant forces, or the components of result-
ant forces, at some specified stage of penetration. For simple indenters the cutting force is usually
the direct thrust, more or less normal to the surface. For roller cutters, cutting forces are usually

-
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2 MECHANICS OF CUTTING AND BORING

measured at the axle of the roller, and defined in terms of orthogonal components parallel and nor-
mal to the surface (or travel direction of the roller).

Cutting speed, as applied to roller cutters, is the travel velocity of the axle parallel to the working
surface. The term cutting speed is not often applied to simple indenters, although it may be used to _
describe the mean rate of penetration, e.g. when an indenter is thrust into a material by a laboratory :
testing machine.

Constant penetration operation of a roller cutter means that the normal distance between the axle
and the (smooth) work surface remains constant as the roller travels, so that penetration depth does
not vary. For constant penetration operation, the mountings of the roller must be stiff.

Constant thrust operation of a roller cutter is supposed to mean that the normal component of J
cutting force remains constant as the roller travels. In reality, constant thrust is virtualfy unattain-
able in brittle materials (the requirements are perfect compliance and zero inertia).

A pit, or crater, made by an indenter is usually taken to be the cavity that remains when the in-
denter is withdrawn and loose fragments are cleared away. In brittle material this cavity is usually
| bigger than the volume of the indenter that penetrated, partly because of “‘overbreak” to the sides, J
and partly because of crushing under the tip of the indenter, ,
‘ A groove, or kerf, made by a roller cutter is the channel, often irregular, left after passage of the J
roller. As in the case of a crater, the cross-sectional area of a groove in brittle material is usually
greater than the cross-sectional area of the part of the roller that penetrated.

Groove spacing is defined here as the center-to-center distance between parallel grooves.

The specific energy of an indentation tool is the work put into the indentation process per unit
volume of material displaced. Alternatively, for a continuous uniform process it is the power input

-

for indentation divided by the volumetric displacement rate. The dimensions of specific energy are 1
energy per unit volume, which is the same as force per unit area, or stress (e.g. in.-bf/in.? = Ibf/in.?; !
J/m? = N/m?).

The cutter radius for a roller cutter is the radius to the extreme tip of the disc edge, the studs, or
the teeth.

. Studs, or buttons, are hard projections, usually of tungsten carbide, set into the rims of discs or
; the surfaces of roller drums.

The stud radius on a studded disc is taken as the radial distance between the tip of the stud and
the disc perimeter in which it is set.
, The wedge angle, or cone angle, of an indenter is the apex angle for the part of the tool that pene-
' trates the work. In this report the half-angle is denoted by g, so that the total wedge angle is 28,

The edge angle of a disc cutter is the apex angle of a cross section of the rim. In this report the [
haif-angle is denoted by 8, so that the total edge angle is 28.

-

PRINCIPLES OF INDENTATION CUTTERS

- —t

Action of an indentation cutter

The distinguishing characteristic of an indentation cutter is that its active element penetrates in
a direction more or less perpendicular to the surface that is being cut, in contrast to a parallel-motion
tool, which travelis parallel to the surface that is being cut. In its simplest form, the indentation tool
is thrust into a surface normally, so that it either displaces material by some kind of plastic flow or
compaction, or else forms a crater by brittle fracture. The cutting process progresses by stepping
; the tool forward to a fresh surface during the interval between successive workiny thrusts (“indexing"),

so that a line of indentations or craters is formed. If the craters are very closely spaced a continuous
groove, or kerf, is created. i
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PART 5: DYNAMICS AND ENERGETICS OF INDENTATION TOOLS 3

Thrusting perpendicular to the surface is the action of a simple punch, a typical percussive rock
drill (Fig. 1), or an impact breaker. There are other indentation cutters which penetrate in a direc-
tion that is not exactly perpendicular to the surface being cut. These are mainly the various types
of free-rolling disc cutters and roller cutters (Fig. 2).

Indentation tools of the punch type can thrust into the work at an oblique angle, and under these
circumstances there may be some confusion about the distinction between the “indentation’ and
‘“parallel-motion” classifications. For present purposes, a punch would be classed as an indentation
tool if it were repeatedly withdrawn and then thrust back against a fresh surface, whereas it would
be classed as a parallel-motion tool if it were held into the work and driven parallel to the surface
by continuous thrust or repeated impulses {like a stone-mason’s chisel).

When an indenter is brought into contact with a surface and force is applied, a stress field is set
up in the work material and in the tool itself. The form of the stress field in the work material de-
pends on the geometry of the contact area, the distribution of pressure within that area, and the
stress/strain characteristics (“constitutive equations’) of the material. in the present context it can
be assumed that the work material will be elastic under moderate stresses, until plastic yielding occurs
at some critical combination of stresses (or of stress invariants as defined by some failure criterion).

As increasing load is applied to an indenter, elastic stresses in the work material increase corres-
pondingly, but the deformation is small (Fig. 3a). When the elastic limit is reached and plastic
yielding begins, the indenter starts to penetrate the material, but the way in which it does so depends
on a number of factors.

If the indenter is being loaded by a ‘“soft’ or compliant system, the release of strain energy which
occurs at yielding will be accompanied by large displacements, and the indenter will tend to thrust
abruptly into the material without completely unioading itself. By contrast, if the indenter is being
loaded by a “stiff’’ or rigid system, stored strain energy can be released by a small displacement of
the tool, which wili thus tend to unload when the material yields abruptly.

The other major factor is the behavior of the work material, which is commonly characterized by
the extent to which it displays ductife or brittle tendencies. In brittle material, where most of the
deformation prior to failure is elastic, yielding occurs by cracking and a crater forms around the tip
of the indenter (Fig. 3b). in ductile material, where there can be flow at high strain rates without
cracking, the indenter can penetrate deeply by displacing material around itself (Fig. 3¢c). If the
material is readily compressible, the indenter can penetrate by compressing or compacting its
surroundings.

When indentation tools are used for cutting rock and similar materials, the usual expectation is
that the bulk of the material will be brittle or friable at the prevailing strain rates. However, under
high confining stresses, such as may exist in deep fluid-filled boreholes, rocks may exhibit a ductile
response to penetration.

Indentation tools of the punch type are usually loaded inertially by repeated impulses. Impulsive
loading can be produced by direct impact (e.g. cable tool drill, wrecker’s ball, ballistic projectile,
sand blasting) or by a drop weight (i.e. a hammer of any kind). Alternatively. percussion can be
applied by hydraulic, pneumatic, explosive, or spring mechanisms (as in percussive drills, impact
breakers, and modern pile drivers).

Indentation tools of the rotary type are usually loaded by static thrust against a reaction {(e.g.
rotary drills, raise borers, tunneling machines, asphalt disc cutters, glass cutters). In principle, roli:
ing cutters can be operated with 1) constant thrust, so that penetration depth is not necessarily uni-
form or constant, and 2) constant displacement, or constant penetration depth, in which case the
reaction force is not necessarily uniform or constant. When multiple cutters are fitted to a single
machine, as on the boring head of a tunneling machine, the complete machine may operate at con-
stant thrust while the individual cutters are operating effectively at constant depth. Tbe kinematics
of roller cutters has been treated in Part 1| of this series.

3
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4 MECHANICS OF CUTTING AND BORING

a. Small-diameter x-bit.

b. Large-diameter x-bit.

¢. Small button bit.

e. Medium-size button bit for
downhole hammer.

d. Button bit for hammer drill.

Figure 1. Indentation bits for percussive drilling. Photo credits: a, b and e—Kennametal Inc.; i
¢ and d—Baker Drill Inc. . ‘
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PART 5: DYNAMICS AND ENERGETICS OF INDENTATION TOOLS 5

a. Single taper-edge disc cutter.

S an e # e — o m—a— - -
—ta

[T AR

e. Roller cone with hard studs set around 7 discs. f.. Studded roller ce with well supported buttons.

Figure 2. Roller cutters for drills, raise borers, and tunnefing machines, Photo credits: a and b—
Alfred Wirth & Co.; ¢, g and h—Hughes Tool Company; d, ¢, f, | and j—Reed Tool Company.
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6 MECHANICS OF CUTTING AND BORING

g. Simple roller cone with staggered array of hard
studs.

i. Tricone roller rock bit with hard indenter studs. J. Toothed roller rock bit.

Figure 2 (cont’d). Roller cutters for drills, raise borers, and tunneling machines,

Initial stresses for idealized conditions

In order to gain some insight into the stress fields that initiate an indentation process, it is helpful
to first idealize the situation by considering the normal loading of a perfectly smooth plane surface
that forms the boundary of an elastic semi-infinite medium. The aim is to examine the distribution
of stress in the material loaded by the indenter, and in particular to consider the geometry and the
stresses in the contact area between the indenter and the work material.

The two simplest idealizations for indenters are the knife-edge line load, representing a wide sharp
wedge, and the point load, representing the tip of a sharp cone. These may seem to be unrealistic
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a. Initial loading of elastic material.

Fracture

Surface b. Crater formation in britt!: material.

Sides subject tonormal
stress plus frictional shear

oS eTeo y

m\\. <>

RS>

¢. Plastic slip lines in ductile material.

SR
<71
aras’le ™

Figure 3. The action of an indentation tool.

oversimplifications. However, for the region outside of the immediate contact zone, the stress fields
which they produce are virtually the same as those produced by more realistic distributed loads, by
virtue of the Saint-Venant principle. To see the effects of more complicated distributed loads, some
of the stresses on contact surfaces and along axes of symmetry can be obtained, leaving aside the
more difficult problems of general stress distributions for these cases.*

Derivations for many of the required relationships for the simpler cases are given by Timoshenko
and Goodier (1951), and solutions for more complicated cases are treated in the literature for linear
elasticity. The results summarized here are arranged with two-dimensional solutions first, then axi-
symmetric three-dimensional solutions, and finally other three-dimensional cases. In all cases it is
assumed that there is no friction between the punch and the material, and the usual assumptions of
small-strain efastic theory apply.

Simple knife-edge loading )

The first case for consideration is a simple knife-edge line load acting perpendicular to the plane
surface of an elastic half-space. This two-dimensional problem relates to the action of a wide sharp
wedge. The practical reality of finite contact area does not invalidate the theoretical results as long
as it is understood that they do not apply very close to the contact.

When a knife-edge load of magnitude ' per unit length is applied perpendicular to the surface
and a system of polar coordinates is taken (Fig. 4}, the resulting stresses are

_2P cosb (1)

a =
r ar

*Results for more complicated cases are often illustrated by assuming that the indenter and the indented material
have the same elastic constants. This assumption may not be realistic in rock-cutting problems.
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=X +x

Figure 4. System of coordinates for analysis of a
knife-edge load or a point load.

g
(2P7ma)
1.OT

0.8t
0671

04+
02 .;.// o Ty

Figure 5. Stress components induced on a plane at depth y = a when a knife-
edge load is applied to the surface of an elastic half-space at x =0,y = 0,

6, =0 (2)

T =0 (3)
the negative sign denoting compressive stress. For any circle of diameter d drawn through the point
of contact with center on the loading axis (Fig. 4), d = r/cos8, and therefore all points on the circle
have a constant radial stress of

0, =2Pnd. )

In Cartesian coordinates (Fig. 4), the stress components are

o, = 0, 5in8 = -(2P [n) (xy)/(x? +y?)? 5)




— - -

- —

e e ——
Wt

A e e g
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P!
a
X \ +*x
8 a\\
A
\
L \
q -
T"a Figure 6. System of coordinates for analysis of a knife-edge
y load.
y
0, = 0, cos20 = - (2P [m)(°) | (x? +?)? (6)
Txy = O, sinf cos6 = (2P'[7) (xy2) ] (x2 +y2)2. )]

On any plane that is parallel to the surface at depth y = g, the stress components vary with x as
shown in Figure 5. The sign reversal for the shear stress Tay is simply a consequence of the sign con-
vention; the stress field is completely symmetrical about the loading axis.

Inclined knife-edge loading

The solution for the normal knife-edge load can be modified to cover the case where the thrust
line of the knife-edge load is inclined at an angle a from the norma direction. This case (Fig. 6) re-
lates to the action of a wide sharp wedge or a wide chisel when it is pushed against the work at some
arbitrary angle of inclination.

The stresses produced by the inclined load are given by eq 1-3 when the coordinate angle @ is re-
placed by (8+a), which is equivalent to measuring 6 from the force direction:

0, = -(2P'[ar) cos(6+a) (8)
0y =0 9)
T =0. (10)

The Cartesian stress components referred to axes that are parallel and normal to the material sur-
face, respectively, then become:

0, = -(2P'|nr) sin%0 cos(0+a) m)
o, = ~(2P'nr) cos?8 cos(6+a) (12)
Ty = ~(2P'[nr) sind cos@ cos(6+a) (13)

where 7 = (x2+y2)%  sin@ = -x/(x2+y2)"%, and cos0 = y/(x2+y2)%. Figure 7 shows the Cartesian
stress components on a plane at depth y = g when the knife-edge load is inclined at a = 45°. The dia-

gram shows that in this case the normal stresses become tensile on one side of the normal through
the loading line.

A Ldormibenininioemtn et el L ]
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o :

(2P7Tro) i
1.O7 :
0.8+

; 06t

0.471

AL s L e

4.0

,: Figure 7. Stress components induced on a plane at depth y = a when a knife-edge
load inclined at 45° js applied to the surface of an elastic half-space at x =0,y = 0, i

1 Figure 8. Uniformly distributed strip load.

Uniformly distributed strip load

' The basic analysis for the knife-edge load can be used to obtain the stresses induced by a set of
) parallel knife-edge loads, or for an arbitrarily distributed two-dimensional strip load, by superposi-
| tion. One case that m:ight conceivably be of interest is a uniformly distributed normal pressure ¢

f (Fig. 8), although it should be recognized that this is not the loading that is applied by a flat-end

! rigid punch (see next item).

-‘J Referring to F igure 8, it is convenient to locate any arbitrary point O by the intersection of radii
A rq and r, drawr from points A and B at the outer limits of the load contact zone. If the included
S angle between OA and OB is a, the direction of one of the principal stresses at O is the bisector of
k AOB and the magnitudes of the principal stresses are

04,0y = -gn(a ¥ sina). (14)
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(2P/wa)
1.2

0.8 04 0 04 0.8 o8 04 0 04 [oX]

% L7
Figure 9, Pressure distribution at the .- Figure 10. Pressure distribution under a long
interface between a rigid flat-face pane/ semi-cylindrical indenter.

and an elastic half-space.

For any circular arc drawn through A, B and O, with AB as chord, a is constant for all positions of
0, 50 that the magnitudes of the principal stresses remain constant along the arc.

Pressure distribution beneath a flat-face punch
A flat-face rigid punch (Fig. 9) produces uniform deflection under the loaded area. The pressure
distribution in the contact zone is given by

0= P - P’ (15)
n(a®-x2y*  ma[1-(x/a)?]"

where P' is the normal force per unit length that is acting on the punch, and 2a is the width of the
contact strip. Figure 9 shows this diagrammatically; note that theoretically g is infinite at x = ta.

Pressure from a long cylindrical indenter

When a long cylindrical surface is pressed against an elastic surface with force P’ per unit fength,
the pressure distribution within the contact zone is elliptic, ranging from zero at the edges of the
contact strip to a maximum pressure g at the center of the strip. The maximum pressure g, is re-
lated to the applied force P’ by

o =2P'/na (16)

where gis the half-width of the contact strip. The normal pressure g at the contact surface (oy at
y=0)is

g =qp1-(x/a)?]% = (2P'/ma) [1-(x/a)?]*:. 7
Figure 10 shows the relation graphically.

The width of the contact strip 2a depends on the force P', on the radius of the indenter edge R,
and on the elastic moduli of both the indenter (£, »,) and the work material (£,,¥,):

"
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12 MECHANICS OF CUTTING AND BORING

2P/ma

e

Figure 11. Stress components induced along the y-axis in an
elastic half-space when a semi-cylindrical indenter is applied at
x=0,y=0 ffor the case where[(l-v%)/EI] =/(I-v%)/E2/ }
(After Timoshenko and Goodier 1951.)

2 A% . E
a=2[P'R 1-v] + 1-v5 ) (18)

l n E] E2

Figure 11 gives the stress distribution in the material along the y-axis for the case where [(1 -vf)/[;‘1 ]
= [(1 ‘V%)/Ezl .

Pressure from a flat-face indenter with rounded corners

On simple theory, the pressure under a flat-face indenter with square corners becomes infinite at
. the edges of the contact area (eq 15 and Fig. 7). By contrast, the pressure under a cylindrical in-
denter becomes zero at the edges of the contact area (eq 17 and Fig. 8). If a flat-face indenter has
rounded corners, the pressure distribution has some of the characteristics shown by both the square-
edge punch and the cylindrical punch.

If a flat-face indenter has its corners rounded off by smooth transition curves (no discontinuity in
the curvature), then the distribution of normal pressure g on the surface of contact can be described
by the relation

e i

q = (4P'3na) [1+2(x/a)?| [1-(x/a)?]% (19)
where x is distance from the punch centerline, 2q is the width of the contact area, and P'is the ap-
1 plied force per unit length.* Figure 12 shows this distribution; the pressure drops to zero at the
‘ edges of the contact area, and there are pressure maxima at t(a/\/2 ).t

Comparison of pressure distributions for two-dimensional cases

In Figures 10 and 12 the pressure distributions were normalized with respect to the pressure on
the centerline, but it is interesting to make a comparison of the various pressure distributions by nor-
malizing with respect to the mean pressure P'/2a. Figure 13 shows the pressure distributions for:
1) uniformly distributed load, 2} the flat-face punch with square corners, 3) a circular cylinder, and
4) a flat-face punch with smoothly rounded corners.

R -

* This relation for "‘a cylinder whose contour is a curve of the fourth degree’ was derived by L.A. Galin. The
English translation of Galin's book Contact problems in the theory of elasticity (1.N. Sneddon, Ed.) gives the
equation incorrectly; the equation on p. 49 of the transiation should have a® in the denominator instead of a* .
¢ t The distribution under a pneumatic tire apparently has this general form, and the pressure maxima have been
attributed to sidewall stiffness. In fact, the pressure distribution would be similar even under a solid tire.
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PART 5: DYNAMICS AND ENERGETICS OF INDENTATION TOOLS 13

P
2.0
_3 Flat-Face
(P/20) Punch
116
—
o Fiot-Face
PE A Y w/gently
s ~ rounded corners
. 7 <
(4P/3ra) ) \__/ + N Uniform
1.6 / 0.8 \ Pressure
4 A
’ 3 . \
N Circular |
A loa Cylinder
0.8 04 [¢] 04 0.8 08 ’ O..4 . 0] * 0..4 . 0..8
K/O x/o
Figure 12, Pressure distribution under a Figure 13. Comparison of pressure distribution

flat-face indenter that has a smooth
transition to rounded edges.

beneath various kinds of two-dimensional in-
denters. Pressure q is normalized with respect
to the mean bearing pressure P'/2a.

Simple point load

The obvious place to begin consideration of three-dimensional axisymmetric cases is the classic
Boussinesq problem, which involves a point load P pressing normally on an elastic semi-infinite
medium.* This is the three-dimensional equivalent of the knife-edge problem that was outlined at
the beginning of this section. Taking cylindrical coordinates with the load point as origin and the
load axis as the z-direction, the stress components are

4
o, =L a-29) - == ] 3t (20)
2nr2 (r2+22)%] (r2+22)°h
2
0p=-L_(-mf1- 2 - Iz (21)
2nr? (PR+22)h (242
3
o,=-3F _r2 (22)
2nr? (r2+22) h
3.2
rey = - 3pr _rz (23)

2072 (r2+22)%

where v is Poisson’s ratio.

If a sphere is drawn through the loading point with its center on the loading axis, such that the
surface plane is tangent to the sphere (three-dimensional equivalent of Fig. 4), there is a simple ex-
pression for the resultant stress on horizontal surfaces intersected by the sphere. The resultant stress

* Note that for the three-dimensional cases # is a force, whereas for the two-dimensional cases ' s a force per
unit length.
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(Pr2mz?)

Figure 14. Radial variation of stress components on a plane at depth z = Z when
a point load is applied perpendicular to the surface of an elastic half-space at r = 0,
2=0(for v=0.3).

on any elementary horizontal surface is directed through the loading point, and its magnitude is
3P/2nd?, where d is the diameter of the sphere.

In Figure 14 the radial variation of stress components is shown for a plane at depth z = Z with
v = 0.3, following the convention that tensile normal stresses are positive.

Uniform pressure on a circular area

When a load is distributed over finite area, the resulting stresses can be obtained from the point
load solution by superposition. A simple application of this principle gives the solution for uniform
normal pressure g distributed over a circular area of radius g. Taking the z-axis for cylindrical co-
ordinates as the normal direction through the center of the loaded area, with origin at the surface of
contact, the stress components are:

3
0,=0, =-9-’(1+2v)- 01ty 2 - (24)
2 (a2+22)‘/, (a2+z2) A
3
o,=-q|1- ——}. (25)
(a%+2%)
For points on the z-axis, the maximum shear stress (g,-0,)/2 reaches its greatest value at a depth
,'=0[2(1+V) h (26)
7-2v

at which depth it has the value

= 09-01 =¢Ll1-2v+y2 1+ ’/g]' 27
T"“"(z)maxzz g (1*) @7)

Withv = 0.3,

PR APt rtiversape.-ow= Aucre-rrpper Tty e yrer v
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7'=0.638a Tmax = 0.33¢

i.e. the maximum shear stress, which is one-third of the applied pressure, occurs at a depth equal to
about two-thirds of the radius of the load area.

Pressure under a circular rigid punch
For a flat-end rigid punch that has a circular loading area of radius a and an applied normali force
P, the displacements under the punch are uniform and the distribution of pressure ¢ with radius r is

q= __'_’_____'_ . (28)
2na? [1-(rfa)?] s

The pressure at the center, P/ 21raz, is half the average bearing pressure, and the pressure at the cir-

cumference is theoretically infinite.* The distribution of the dimensionless pressure q/ (PI2na?)

with dimensionless radius r/a is exactly the same as the distribution shown in Figure 9.

Stresses under a spherical indenter

The case of a spherical surface pressing against the plane boundary of an elastic half-space is of
considerable interest in the present context, since it relates to the action of the hemispheric studs
or buttons that are used in many roller rock cutters and percussion tools. The significance of the
particular geometry is restricted mainly to the zone immediately surrounding the contact, since the
stress field outside this region is not much different from that produced by the point foad (the
Saint-Venant principle).

When a spherical surface is brought into contact with a plane under zero normal load there is, in
theory, a point contact. As a force P is applied across the interface, a circular contact area develops,
its radius a increasing as P increases. The radius of the contact area g is determined by the radius of
the sphere R, the force P, and the elastic properties of the sphere and the material:

_p2 —2\1%
a=|3PR (LV. S+ ! l"“)] ’ (29)
4 E, E,

where £, and £, are respectively Young’s moduli for the sphere and the material, and v, and v,
are Poisson’s ratios for the sphere and the material.

The pressure distribution over the contact is ellipsoidal or hemispheric, with a maximum pressure
g, at the center equal to 1.5 times the average pressure P/1mz:

g= 32 [1-(rfa)?)" (30)
2na

9,= L. (31)
2mg2

The dimensionless pressure g/ (3P/21ra2) varies with the dimensionless radius r/z in exactly the same
way as is indicated in Figure 10,

* The infinite edge pressure also applies to the indenter itself. This is of interest in connection with the conventional

uniaxial compression test, where a sharp-edged right circular cylinder is pressed between wide steel platens. The
cylinder is quite likely to have its corners chipped or deformed plastically.
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%

@Fr2sed O°T

Figure 15, Distribution of stresses along the z-axis when a
spherical indenter is pressed against the surface of an elastic
half-space (v =0.3). (After Timoshenko and Goodier 1951.)

Knowing the distribution of normal pressure and the size of the contact area, the stress field in
the material immediately below the contact can be obtained by superposition from the point load
solution if nececessary. On the surface of the material there is no normal stress outside the contact
area (r > a), but in the radial direction there is a maximum tensile stress at the edge of the contact
zone (r = a). The value of this maximum tensile stress is

o, = “'2”) qo=(1_2v) P . (32)
3 2n4?

The circumferential stress o, at the same radius is a compressive stress of the same magnitude, i.e.
0, =-0,. Since g, = 0, there is thus a state of pure shear at the boundary of the contact surface.
The magnitude of this shear stress is g, (1-2v)/3, which amounts to 0.133¢,, or 0.2(P/na?), for
v=0.3.

The distribution of stress along the axis of symmetry is shown in Figure 15 for v = 0.3. The nor-
mal stresses are all compressive, and the maximum shear stress for r = 0 occurs at a depth equal to
about 50% of the contact radius a (i.e. z = a/2). For » = 0.3, the value of this maximum shear stress
is approximately 0.31q,, or 0.47(P/na?).

Indenter with two-way curvature

For an indenter that has two principal radii of curvature, like the rim of a simple disc cutter, the
contact area has an elliptical shape, and the distribution of pressure in the contact area is described
by the ordinates of a semi-ellipsoid. ,

If the indenter has principal radii of curvature R and R’ in orthogonal planes that are both nor-
mal to the surface of the medium, the lengths of the semi-axes of the elliptical contact zonea and b

are given by
(e
._ _13P \E E
i b e (A 33)
2+
R R
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3.0
m
L 2ol - 3
m,n ]
1.0 - .
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6=cos™’ —v—:';ﬂa

Figure 16, Values of the dimensionless factors mand n in eq 33
and 34. (Plotted from values quoted by Timoshenko and Good-
fer 1951, and credited to H.C. Whittemore and S.N. Petrenko
1921.)

(1-»% 1-u§) '

—— t

3P E, E,

2 1,1
(+'7)

where m and n are dimensioniess numbers depending on R and R'. Values are reproduced by Timo-

shenko and Goodier (1951) and are given here in graphical form in Figure 16. The maximum pres-
sure g, at the center of the contact area is

(34)

[

>
3P
g, == S e, 35
2= %" " e Gs)
,. : If x and y axes are taken from the center of the contact zone along the semi-axes @ and b respectively,

the principal stresses at the center are: s

- b
‘ 0, =4, [2,,+ (1-2»)m] (36)
f
A
: = -2 9
o, q°[2v+(1 2»)a+bl (37)

0, ==y (38)
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At the ends of the axes of the ellipse, 0, =0, 0, = -0y, and Txy = 0; i.e. there is a state of pure shear,
and the radial stress component is tensile. For the ends of the axes, the magnitudes of the shear
stress and the principal stresses are as follows.

Major axis, x = +g,y=0,2=0:

r=g, =-0,=3F __(1-20) 1 tanh™? [1-(6/a)2]% -1} . (39)
2na® [1-(6/a)?] | [1-(b/a)?)"
Minor axis,x =0,y =1b,z=0:
r=o,=-0,= 32 (1220 hi___ 1 unt [(gp)2-1] (40)

2na® [1-(6/a)?] | [(a/b)?-1)

The limits of the elliptic contact case are a/b = 1, which is the hemispheric indenter, and a/b = oo,
which is the long circular cylinder.

Failure criteria

Knowledge of the distribution of individual stress components, as derived from elastic analysis,
does not immediately indicate where or when fracture or yielding of the target material will begin.
For some materials, fracture may initiate when the maximum tensile stress reaches a critical level at
some point. For other materials, yielding may begin when the shear stress reaches a critical level at
some point in the material. In general, the stress conditions that produce onset of fracture or plastic
yielding are described by a failure criterion.

A failure criterion is usually expressed as a critical combination of principal stresses that leads to
failure. For some materials, notably metals subject to slow loading, yielding begins when the shear
stress or deviatoric stress (given by the second invariant of the stress tensor) reaches a critical value,
apparently irrespective of the bulk stress.* The Tresca criterion and the von Mises criterion are of
this form. For other kinds of materials, such as brittle solids and granular media, the shear resistance
increases significantly as the bulk stress increases, and the failure criterion has to take this into
account. Probably the best known criterion with this more general form is the linear Mohr-Coulomb
criterion, which assumes the shear strength of the material to be proportional to the confining
pressure.

The simple Mohr-Coulomb criterion, like the Tresca criterion, is a two-dimensional relation in
principal stress space; i.e. it is assumed that failure conditions are determined by the greatest and

least principal stresses o, and o3, where 04 > g, > g3. The relation is linear, and it can be expressed
in terms of principal stresses as either

(0,-03) _(0y+03)
2 2

sing =c cos¢ (41)
or

01 (W24 1)%-p] -0y [(W@+ 1) +u] = 2¢ (42)

* Bulk stress here denotes the isotropic (or "*hydrostatic’’) part of the stress tensor, as given by the first invariant.
It Is also referred to as the *‘mean normal stress’’ or ‘‘mean principal stress.”
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where the constants ¢ and ¢ are identified with the intrinsic cohesion and the internal friction of the
material, respectively. With ¢ taken as the angle of internal friction, u is the corresponding coeffici-
ent of friction u = tan¢g. It might be noted in passing that for relatively high pressure the McClintock-
Walsh criterion (a derivative of Griffith theory applied to rocks) is identical in form to the Mohr-
Coulomb criterion, with a substitution of ¢ = 2T, where T is the uniaxial tensile strength of the
material.

Actually there are indications that the linear Mohr-Coulomb criterion may be a good approxima-
tion only when the failure is “brittle,” i.e. preceded by straining that is largely reversible. Under
conditions that favor creep and ductile failure {i.e. high bulk stress, low strain rate and high tempera-
ture), the Mohr envelope seems to be nonlinear, with the critical shear stress tending to a limit for
high confining pressures. A parabolic Mohr envelope has been assumed for some analyses of indenta-
tion cutting in rock (Cheatham 1964, Pariseau and Fairhurst 1967, Cheatham and Gnirk 1967).
Adoption of a nonlinear criterion may be important for indentation studies even when there are no
externally imposed pressures (as in deep drilling in fluid-filled holes), since the indenter itself can
sometimes create high bulk stresses in the target material.

Initiation of failure

By combining the elastic stress distribution for an indenter with a suitable failure criterion, it
ought to be possible to predict where failure will begin, and at what load level on the punch. For
example, a set of Cartesian stress components expressed as functions of applied load, load area
dimensions, and space coordinates can be combined to give the principal stresses as functions of the
same variables by applying standard identities. The expressions for the principal stresses can then be
combined in accordance with an appropriate failure criterion, e.g. eq 41 or 42. Finally, a distribu-
tion of “stress severity’’ corresponding to the chosen failure criterion can be obtained, and critical
locations in the stress field can be identified. This is a laborious procedure that may or may not be
illuminating. An example of results from such a procedure is provided by an analysis of failure
initiation in the conventional uniaxial compression test made by Hawkes and Mellor (1970).

For present purposes it is probably not worth the effort to try to predict where failure will initi-
ate, since local failure at a single point does not necessarily permit a complete failure of the system
or structure. In order for an indenter to penetrate, either by chipping out a crater or by causing the
material to flow, critical conditions have to develop over complete areas so that displacement sur-
faces can form. This is the kind of problem that is dealt with in plasticity theory.

Plastic yielding

In the present context, plastic yielding is considered to be the condition which allows an indenter
to penetrate, but it does not necessarily imply that the material flows like toothpaste. The point is
that failure conditions in the material have to spread through a finite zone before the indenter can
penetrate.

After brief mention of the line load, which does not have finite contact area, we start with a con-
sideration of the behavior of flat-face indenters, which have constant contact area and a character-
istic plastic yield zone that develops at a fixed force level. Following this, other types of indenters,
such as cylinders, wedges, spheres, cones and pyramids, are discussed. In the latter cases, the contact
i area increases as penetration increases, and there is progressive yielding under increasing force levels.
For the whole of this part of the discussion it is assumed that the material follows the von Mises
criterion, and that the indenter makes frictionless contact. In the second part of the discussion the
Mohr-Coulomb criterion is introduced, and interfacial friction is considered.
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Yielding under a knife-edge load

It is observed that, in materials which fail by shear, the flow or fracture develops along character-
istic paths, or sliplines. Very often, these paths appear to develop in such a way that they maintain
constant orientation with respect to the directions of principal stress. In the case of a knife-edge
load, the principal directions are the radials from the loading point and the concentric semicircles
that cross these radials orthogonally, since o, and o, are principal stresses (see eq 1-3). Taking the
usual polar coordinates r and 0, the curves that intersect the principal directions at constant angle u
are two orthogonal sets of logarithmic spirals described by

r=ry exp(t cotp) (43)

where 7 is a constant. The initial elastic shear stress along each trajectory and the corresponding

n: -.nal stress can be obtained by combining eq 1-3 with eq 43, together with standard resolution
of stress components. This gives stresses which vary with 8, but in fact the failure cannot progress
until the critical yield stress is reached over the complete length of a sufficient range of sliplines.
Thus the elastic stresses are not directly useful in predicting failure loads for deep indentation. The
alternative procedure adopted in plastic analysis is to deduce a slipline field that satisfies the yield

i criterion and the boundary conditions at the free surface and indenter surface, to obtain the stresses

on the interface, and finally to calculate the applied force as a function of penetration by resolution
of forces.

Two-dimensional flat-face punch J
Consider a two-dimensional flat-face indenter, as shown in Figure 9 and Figure 17. The elastic
stress solution shows that infinite pressure develops at the corners as soon as load is applied (eq 15 :
and Figure 9), which implies that there will be immediate local failure of the material under these i
corners. However, this local incipient failure serves only to relieve the stress concentrations there,
and the indenter will penetrate by only a very small distance in accordance with the conditions of
elastic equllibrium. As the force on the punch increases, the zone that is subject to the critical

yield stress will spread, until eventually it develops a shape that permits the punch to displace mate-
rial and penetrate, either by flow or by fracture.
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Figure 17. Slip line fields for inciplent plastic yielding under a two-dimen-
sfonal rigid frictionless punch on the plane surface of a semi-infinjte medium.
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In elementary plasticity theory (see Hill 1950, Prager and Hodge 1951), the incipient plastic yield-
ing of material under a two-dimensional flat-face punch is treated by assuming a frictionless contact
and no deformation of the surface outside the punch prior to yielding. The von Mises failure criterion

is usually taken (this criterion is identical to the Tresca criterion for plane deformation), and for
plane strain it is
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where £ is the yield stress for direct shear. From a Mohr circle construction an angle 8, which gives
a shear direction, is defined as

0=1la -1[__x2’x 2 (45)
2

For the free surface immediately adjacent to the punch, o, =0, 7, = 0 and, from eq 44, o, = -2k.
From eq 45 it is found that the shear directions, or slip Ilnes, intersect the surface at 45° in this
region. If the contact surface of the punch is frictionless, then 7,, = 0 in this area also, so that again
the shear directions intersect the contact surface at 45°. With shear directions meeting the surface

at 45° throughout the plastic region, a complete slip field can be constructed by taking 45° fan lines
from the corners of the punch and crossing them with orthogonal curves, as shown in Figure 17. The
outside limits of the plasticized zone remain undetermined, and historically there have been different
interpretations. However, in all cases the predicted critical load on the punch P’ is the same, i.e.

o, = -’21' = -2k(1+m/2) = -5.14k (46)
a

y

or
P’ = 4ak(1+7/2). (47)

Equation 46 indicates that penetration will occur when the bearing pressure of the punch reaches
about five times the direct shear strength of the material. Practical rules-of-thumb for penetration
are often stated in terms of the uniaxial compressive strength of the target material. For example,

there is a widely held view that an indenter will penetrate rock when the nominai bearing pressure
reaches about 10 times the uniaxial compressive strength. In terms of the uniaxial test, X might

be taken as octahedral shear stress at failure, i.e. the axial stress divided by +/2/3. Thus eq 26 could
be rewritten in terms of the uniaxial strength o, as

o, =5.14(0, V2 /3) =2.420,. (48a)
Alternatively, # might be taken as g_/2, in which case

o, =2570. (48b)
Flat-face cylindrical punch

A solution that has been obtained for the flat-face cylindrical indenter (see Hill 1950) gives a

yield-point loading of

o, =285Y =4.94k (49)
where Y and k are yield stresses in uniaxial tension and shear respectively for a material following

the Mises criterion. If we takeg, =Y = £+/2/3 for this kind of material, the result is not much dif-
ferent from that obtained in the corresponding two-dimensional case (eq 46-48), since
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ACto =
AB:AC Figure 18. Sliplines and displacements produced in a

plastic half-space by a two-dimensional symmetrical

wedge.
25 AT
// 7
/4 Figure 19. The full line shows (1+y) asa
oy 207 R/ : function of Baccording to Hill (1950). The
. e / gl broken straight line represents the relation
s 7 ] used by Cheatham (1958). The broken
sy curve is the approximation given by eq 59,
//// 24 and taken for ease of integration in eq 60,
105 30° 0° 30°
B
o, =2.330,. (50a)
If the alternative of k = 0/2 is taken,
‘o, =2470,. (50b)

For most practical purposes, eq 48 and 50 say the same thing.

Two-dimensional wedge

When a two-dimensional wedge of uniform cross section is thrust normally into an incompressible
semi-infinite medium, displacement can take place according to the system of slip lines shown in
Figure 18. If there is no friction between the wedge and the material, the surfaces AC are subject
only to a uniform normal pressure g,,. If the “fan angle” of the slip field is Y (Fig. 18) and the
yield stress in direct shear for the Mises criterion is &, then the normal pressure on the wedge is

o, = 2k(1+y). (51)

I the dimensions AB and AC in Figure 18 are g, then the normal load per unit length P' that cor-
responds to this amount of indentation is given by

P' =20, asinf = 4ka(1+y)sinB (52)

in which ¢ is a function of §:

cos(28-y) = ﬁ% = tan(.;_r -g-) (53)

Figure 19 gives the relation between (1+y) and 8. Taking k = 0,/2/3 as before, the nominal bear-
ing pressure on the horizontally projected area of the wedge is
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Figure 20. Penetration of a plastic half-space by a rigid
frictionless wedge with a flat tip.

'. P
Figure 21. Penetration of a half-space by a
semi-cylindrical indenter. r
| P - Py = 0. =2v/2 -
; Zasnf Jhtaeg " 3 % (1+¢) =094 (1+y) o, (54a)
or,fork =02,
o, =(1+y)o, (54b)

where (1+ ) ranges from 1.0 for an infinitely sharp wedge to (1+x/2), or 2.57, for a flat indenter.*
The latter limit (i.e. 0, = 2.420, or 0, = 2.570,) agrees with the result obtained directly for the flat-
face two-dimensional punch (eq 48).

Two-dimensional wedge with flat tip

For a flat-tipped wedge making frictionless penetration of a von Mises material, as shown in Fig-
ure 20, the penetration resistance #’ might be taken as equal to the resolved resultants of the normal
pressures acting on the flat end and the sloping sides of the wedge, as proposed by Cheatham (1958).
Thus, referring to the symbols of Figure 20,

P'=2a,6,,+2a, sinB 0,5 = 2(a;0,+h tanf o,,). (55)

J e

From eq 48, or alternatively from eq 54 and Figure 19 with g = 90°, the normal pressure on the flat

tip 6, can be expressed as 2.420,, or 2.57a, as in Cheatham (1958). From eq 54, the normal pres-
sure on the sloping faces o,,; can be expressed as 0.94(1+y)o,, or (1+y)o., where (1+y) is given by
Figure 19 for any specified value of 8.

- —

)
] Two-dimensional semicylindrical indenter
! For a smooth semicylindrical indenter (Fig. 21), the penetration resistance P’ is equal to the sum
f of the resolved incremental normal pressures that act on the interface:
f /2
31 P'=2 f .0, sind rdf (56)
' (]
1

in which g, is a function of 6.

* Cheatham (1958) gives o, = (1+8)o, atiributing the result to Hill (1950). In fact, Hill’s analysis gives eq 54 above,
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Cheatham {1958) assumes that 0, can be taken as the normal pressure which would act on a
smooth wedge of half-angle 6. For a material following the von Mises criterion, he takes o, as (1+0)a,,
apparently following the misinterpretation of Hill’s wedge analysis that was mentioned earlier. Asa
practical matter, there may not be much objection to Cheatham’s treatment, since it makes eq 56
readily integrable, and (1+0) is not much different from (1+y), as shown in Figure 19,

Cheatham's expression for o, implies, in terms of the shear yield stress k£, a normal pressure of
2k(1+0). According to Hill (1950), this is the normal pressure required to expand a semicylindrical
cavity in the surface of a plastic material. The semicylinder expansion is not the same case as indenta-
tion by a semicylindrical indenter, since geometric similarity is maintained in the former case, but not
in the latter.

If we accept the approximation (1+y) = (1+8), then eq 54 gives o,, as
0, ~094(1+f)o, or o, = (1+f)o,
or, alternatively (57)
0, ~094(1+8)gs, or a, =(1+0)g,.
Equation 54 can then be integrated to give
P' =1.89[1-sind; + (1+4;) cosb;]r o, {58a)
or
P' =2[1-sinb, + (1+6,) cosd,]r g, (58b)

in which 6, = sin"! (1-h/r). This is essentially the same as Cheatham’s (1958) result. A somewhat
closer appraximation can be obtained by expressing the relationship of eq 53 and Figure 19 as

Y= % {1-cosB). (59)

This permits eq 56 to be written as

n/

P’ =20, f
0

1

2
0.94 [1 + % (1- coso)l sind r do

=1.89 l(l +.§) cosd, -% coszo,] ro, (60a)
or, alternatively,

P =2 [(1 +%)cosoI -% coszo,] rao. (60b)

Figure 22 compares the solutions given by eq 58 and eq 60.
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Figure 22. Comparison of two approximate solutions
for penetration of a von Mises half-space by a smooth
semi-cylindrical indenter.

Three-dimensional indenters

The most general cases are those involving three-dimensional indenters whose horizontal cross
sections are non-uniform, such that the potential bearing area increases as penetration proceeds. in-
denters of this kind include short wedges, pyramids, cones, and spheres.

According to Hill (1950), the nominal bearing pressure on the horizontally projected area is pro-
portional to the uniaxial yield stress in these cases, provided that the material does not work harden.
Thus,

0,=Co,. (61)

The constant C depends on factors such as the shape of the indenter, the friction coefficient between
indenter and material, and other properties of the material. However, C does not seem to vary much
for well lubricated penetration of materials that follow a von Mises criterion. For squat cones (8 > 60°),
C apparently lies between 2.5 and 3, which is not much different from the corresponding proportion-
ality constants for long two-dimensional wedges (see eq 54 and Fig. 19). For spheres, C is said to be
also about 3.

Standard hardness tests depend on indentation by a three-dimensional punch. In the Brinell test
the indenter is a sphere, in the Vickers test it is 2 square pyramid, in the Rockwell test it is a sphere,
cone or spherical-tipped cone, and in the Knoop test an elongated pyramid. Brinell and Vickers
hardness values have the dimensions of stress, and are obtained by dividing the applied force by tne
surface area of the indentation pit. This is not quite the same thing as o,, which is the force divided
by the projected area for lubricated contact. According to Tabor (1970), g,, is equal to 3.2 times
the yield stress (or flow stress) for a wide range of materials, and Tabor equates this shear yield

- stress to the uniaxial tensile strength.

Penetration of a Mohr -Coulomb material by a smooth wedge

The previous discussion assumes that the penetrated material conforms to a von Mises failure cri-
terion; i.e. its shear resistance does not vary with confining pressure, or bulk stress. When rocks and
similar materials are subjected to rapid penetration under typical environmental conditions, this
assumption is unrealistic. The assumption of a linear Mohr-Coulomb failure criterion (eq 41 and 42)
is probably a better approximation, provided that high bulk stresses are not created either by the
geometry of the indenter or by the external environment.
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Figure 23a. Slipline field for a strip load on weightless Mohr-
Coulomb material.

Yo (T2edh) ’

y

Figure 23b. Slipline field for a smooth wedge entering a
Mohr-Coulomb half-space. (After Cheatham 1958,
Fariseau and Fajrhurst 1967).

When a /ine load, or knife-edge Joad, bears onto a Mohr-Coulomb half-space, the potential failure
surfaces are defined by two sets of logarithmic spirals, as was the case for a line load on a von Mises
material (eq 43). However, in this case the spirals intersect the free boundary not at 45° but at
(45° £ ¢/2), where ¢ is the “angle of internal friction” (or angle of shear resistance) for the Mohr-
Coulomb material.

When the line load is extended to finite width, so that it becomes a strip /oad, the slip lines have
to be smooth and continuous, and the most plausible pattern is one which forms a “dead wedge,”
or “false nose,” under the strip load, together with zones of plastic displacement on both sides (Fig.
23a). The penetration force per unit length (P’) for a flat strip of width 2a is given by Prandtl’s

theory, which is the basis for standard soil mechanics equations giving the bearing capacity of shal-
low strip footings on weightless soil:

P’ _ [exp(m tang)-tan2u ], (62a)
2¢ | 2wngtany ¢

where tanu = (1-sing)/cos¢ and o, is the uniaxial compressive strength of the material [for a c-¢
material, g, = 2¢ cos¢/(1-sing)] .

Cheatham (1958) and Pariseau and Fairhurst (1967) treated the penetration of a haif-space by
two-dimensional wedges, assuming a linear Mohr-Coulomb failure criterion and following the gener-
al lines of Prandtl theory. The wedge was allowed to penetrate without displacing the surface of the

half-space, slipline fields were deduced for both smooth and rough wedges, and force-penetration
relations were derived.
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Figure 24. Variation of nominal bearing pressure with wedge angle
for a smooth wedge in linear Mohr-Coulomb material.

#

F Figure 23b gives the slipline field for a smooth wedge according to Cheatham (1958) and Fair-
hurst and Pariseau (1967). From the corresponding equilibrium conditions a force-penetration rela-
tion is obtained, and the results of Cheatham and of Faii hurst and Pariseau can be rewritten in con-
formance with the foregoing terminology as

P _ P [e@(w tang) -tan’y o (62b)
2asinf 2k tanf 2 tan¢ tany ¢

where # is the penetration depth (Fig. 23b), ¢ is the “angle of internal friction,” and u is ¥2{(n/2)- 9],
such that

tany = 1=3in9 (63)
cos¢

As before, the average bearing pressure on the horizontally projected area of the active part of the
wedge is proportional to the uniaxial compressive strength of the material. The proportionality con-
N stant depends on the wedge angle 8 and the internal friction angle ¢. For a given wedge in a given
material, the penetration depth 4 is proportional to the applied force.

In Figure 24, the function that gives the proportionality constant between the nominal bearing
1 pressure and the uniaxial compressive strength is shown graphically as a function of the wedge half-
) * angle § for two values of ¢. These factors are a good deal higher than the corresponding factors for
‘ ' the smooth wedge penetrating a von Mises material (i.e. the factors of Fig. 19 multiplied by 1.15).

Cm e

Penetration of a Mohr-Coulomb material by a slender rough wedge
: A solution for a “rough’’ wedge can be obtained by letting the interface coincide with a fail-
ure surface in the fan region, as in Figure 25. This maximizes the interfacial shear stress, and it is
not necessary to specify an interfacial friction coefficient. The force-penetration relation obtained
by Cheatham (1958) and Pariseau and Fairhurst (1967) can be written as

- -

PI _ PI

—_—— et = A
%sng 2htang 1% (64)
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Figure 25, Slipline field for a slender rough wedge entering a

Mohr-Coulomb material. (After Cheatham 1958, Pariseau
and Fairhurst 1967.)

where

A = [14 sing {cotp tanu-1)] exp(2y tang) - tan?y)

469

v=1 -M+B=%(-2’i+¢)+ﬁ.

2 tan¢g tanyu

For this case there is a restriction:

O<f<u

0< 25<(.’2£- )

Since ¢ is typically about 30° or somewhat less, the solution is valid for wedges whose included
angle 28 is less than about 60°.

Figure 26 gives values of the function A, for two values of ¢ and a range of applicable wedge
angles. The value of A, is the proportionality constant relating the nominal wedge pressure and the
uniaxial compressive strength of the material. By comparing Figure 26 with Figure 24, it can be
seen that friction dominates the penetration resistance in the case of a rough wedge.

Penetration of a Mohr-Coulomb material by a broad rough wedge

If the half-angle of the wedge § exceeds the limit set by eq 67, i.e. § > u, the face of the wedge
can no longer coincide with a slipline, since the maximum fan angle is ¥ = 7/2 (see Fig. 27). Because
the “‘rough” condition prohibits the interfacial slip that can occur with a “‘smooth’’ wedge (as in Fig.

23), a false nose of dead material forms between the limiting fan lines (Fig. 27). The force-penetra-
tion relation for this case (Pariseau and Fairhurst 1967) is
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>

8 1 Figure 26. Variation of nominal bearing
be250 pressure with wedge angle for a slender
, t _ rough wedge in linear Mohr-Coulomb !
‘ material. :
;
5o 20° 25° 30°
B
, Pl - P - exp(2y tang)-tan’u ., i
! ‘ 2asinf  2htanf 2 tang tany ¢ !
! ‘ 2
; = exp(m tang) -tany . {69)
2 tang tany ¢
where
u<p<nf2
3
or
> 28> (7/2-¢). (70)

Since ¢ is likely to be about 30° or less, this means that eq 69 applies only to rough wedges that
have a total included angle greater than 60° or so.

} Once the wedge angle is big enough for a false nose to form, the proportionality constant linking
' the nominal bearing pressure with the uniaxial compressive strength becomes independent of the
wedge angle 8. For ¢ = 30° the value of the constant is 8.7, and for ¢ = 25° it is 6.6, i.e. the limit
values shown in Figure 26.

Y

Wedge penetration with nonlinear failure criteria
and with finite interfacial friction

In general, the Mohr envelope for the failure criterion is nonlinear, and wedge indentation in
accordance with a parabolic envelope has been considered by Cheatham (1964), Pariseau and Fair-
hurst (1967}, Cheatham and Gnirk (1967), and Smith and Cheatham (1975). This criterion is
written in terms of shear stress 7 and normal stress o:

2= A0+8B. )

o - ————

» Pariseau and Fairhurst take 7 as the maximum shear stress, i.e. 4(0,-04), and o as the mean nor-
' ¢ mal stress, i.e. ¥3(0,+03). Cheatham and Gnirk take 7 as 7,, and ¢ as 0, in a system of polar
‘ 3 coordinates.

The results of analyses for the nonlinear criterion are more suitable for direct application in
numerical examples than for brief summarizing in general form, and they will not be discussed fur-
ther here. However, it might be mentioned that the nonlinear envelopes which have been established

o
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Figure 21, Slipline field for a squat rough wedge that forms a
false nose in Mohr-Coulomb material.

experimentally tend to a limiting shear stress that is insensitive to changes in bulk stress; this is quite
similar to the behavior described by the von Mises criterion. Thus the simple analyses for the linear
Mohr-Coulomb criterion and the von Mises criterion provide acceptabie approximations for the ex-
tremes of the external pressure range. The real need for a nonlinear criterion is brought about by
large variations of bulk stress in the stress field imposed by the indenter itself.

Variation of the interfacial friction coefficient has the effect of modifying the ratio of tangential
L shear stress to normal stress on the interface. Thus it affects the direction of the major principal

stress relative to the interface. If 6 is the angle between the y-axis {of Fig. 23, 25 and 27) and the di-

rection of the major principal stress, the values of 8 in a linear Mohr-Coulomb material are (n/2 - g)
for the smooth wedge (Fig. 23), (u-f) for the slender rough wedge (Fig. 25), and zero for the rough
wedge with a false nose (Fig. 27). If 8 is arbitrary, the penetration relationship, following Pariseau
and Fairhurst (1967), is

PI _ Pl

—_— ==l . =A 72
2asinf  2htanB 2% (72)

where

lI +c0s20(1 + cotf tan20) sing exp(2v tang) ~tan2pl . (73)

1
A =
2 2tane tanu‘ (1 +sing)

i mp s

Since @ is related to the interface friction angle ¢', eq 72 in effect describes the influence of ¢’
on the force-penetration relation, Pariseau and Fairhurst (1967) show how 8 and ¢' are related by
Mohr circle constructions. They point out that /f the normal stress along the face of the wedge is
assumed constant, as in the preceding analyses, then specification of ¢' is equivalent to specification
of 6 for eq 72. However, since 0 varies also with the mean stress, this cannot really be justified, and
other approaches may be required.

For present purposes it is not profitable to pursue these complications further.

———

Penetration analyses that are not based on plasticity theory
The ideas that were outlined in the previous section are all based on plasticity theory and formal
failure criteria, and they are applicable to a fairly wide range of materials. By contrast, there are
some other approaches that have been developed specifically for analysis of penetration into rock,
using ad hoc assumptions.
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Figure 28. Wedge penetration mode/
for Evans’ analysis.
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Figure 29. Effect of Bon the dimensionless factor of eq 75, as-
suming two different values for the interface friction coefficient.

Penetration of wedges into coal, according to Evans

The penetration of wedges into coal was studied by Evans and others, and findings have been :
summarized by Evans and Pomeroy (1973). In the first instance, penetration resistance is assumed :
to be proportional to the projected bearing area 2hb tang, where b is the uniform width of the
wedge. It is further assumed that the critical normal stress exerted by the face of a smooth wedge
is approximately equal to the uniaxial compressive strength of the coal. Thus, for a smooth wedge,

P
—_—— =0 . 74
2hb tanp % (74)

The next step in the argument takes into account interfacial friction by assuming that the bearing
surfaces are acted upon by uniform normal stress o, and uniform tangential stress g,, tang', where
tang’ is the interface friction coefficient (Fig. 28). Resolving these stresses in the vertical direction,
equating to P, and assuming (somewhat questionably) that o, = o, gives

P . '
TR (1 + tang’ cotp) o, . (75)

Equation 74 implies that the nominal bearing pressure P/(2hb tang) for penetration of a smooth
wedge will not vary with the wedge angle 8, which differs from the results that are obtained in for-
mal plasticity theory.
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Figure 30. Wedge penetration model for the
analysis by Paul and Sikarskie.

Introduction of interfacial friction according to eq 75 creates a finite dependence of bearing pres-
sure on 8, as shown in Figure 29, The upper curve in Figure 29 is drawn for tan¢’ = 0.5, since meas-
ured values of the interfacial friction coefficient for steel against rock or coal are about 0.5 to 0.55
(Pariseau and Fairhurst 1967, Evans and Pomeroy 1973). However, Evans found that the best
agreement with experimental penetration data was obtained by assuming tan¢’ = 0.1, and the
weaker angle dependence corresponding to this assumption is aiso shown in Figure 29.

Wedge penetration into brittle material,
according to Paul and Sikarskie

In 2 much quoted study of two-dimensional wedge penetration into brittle material, Paul and
Sikarskie (1965) assumed that chips form repeatedly by fracture afong planes that have constant
inclination ¥ (Fig. 30}, where

=3l 59 &

Taking a linear envelope for the force-penetration characteristic, the relationship derived from
these postulates, in the standard form adopted for this report, is

P = cos (1-sing) ‘0. )]
2h tang 1-sin(8+¢)

Interfacial friction is not included in the relationship.

Figure 31 shows the dimensionless function on the right-hand side of the equation plotted against
the wedge half-angle g for two values of ¢. The apparent implication of the graph is that the contact
pressure becomes infinitely large when (8+¢) = (7/2). The authors of the theory interpret this limit
as a boundary between two modes of behavior: with (8+¢) < 7/2, the rock fails by both chipping
and crushing, while with (8+¢) > @1/2, it fails only by crushing. Pau! and Sikarskie (1965) also found
that the best agreement between theory and experimental data was obtained by assuming small
values of ¢ (< 10°) and values of o, lower than the measured value.

Cone penetration according to Miller and Sikarskie
and to Lundberg

Miller and Sikarskie (1968) extended the two-dimensional wedge analysis of Paul and Sikarskie
(1965) to cover three-dimensional indenters, notably cones and pyramids. For the cone penetrating
brittle rock, the assumed situation is the rotationally symmetric version of the two-dimensional case
illustrated in Figure 30. The envelope of the force-penetration characteristic is taken as parabolic;
i.e. P is proportional to h2.
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